De la dynamique moléculaire, via l'homogénéisation, aux modèles macroscopiques de poroélasticité et électrocinétique

Jean-François Dufrêche

University Montpellier 2 / ICSM Institut de Chimie Séparative de Marcoule CEA/CNRS/UM2/ENSCM with contributions by:

B. Siboulet (ICSM/CEA Marcoule) B. Coasne (MIT/CNRS/UM2) P. Turq O. Bernard M. Jardat (UPMC-Paris6)

G. Allaire R. Brizzi (E. Polytechnique) A. Mikelic (Univ. Lyon 1)

Experimental studies of irradiations

Number of defects (single bonded oxygen) as a function of the temperature) from Monte-Carlo simulations of annealing

Minimization of F = U - TS

- High temperature: S maximum S Defects
- Low temperature: U minimum Solution No defect

Simulation of silica

Water adsorption isotherms (number of water molecules as a function of the external water pressure)

No silanol groups: hydrophobic surface With silanol groups: hydrophilic surface Journal of Colloid and Interface Science 225, 411-420 (2000)

FIG.9. adsorption–desorption isotherms of water vapor at 298 K for dehydroxylated MCM-41 sample (PS-C18-D) and rehydroxylated MCM-41 sample (PS-C18-R).

J. Phys. Chem. B 115 7881 (2011)

With silanol : hydrophilic

No silanol : hydrophobic

J. Phys. Chem. B 115 7881 (2011)

Hydrodynamic Flux (Poiseuille flow) NEMD Non equilibrium Molecular Dynamics

Slip length δ ≃ 0.4 nm

dramatic consequences for the electrokinetic

phenomena?

Negligible only if:
$$\delta << 2\lambda \ln\left(\frac{\Delta}{\lambda}\right) \quad \lambda \text{ Gouy length }, \Delta = \min(\kappa^{-1}, L)$$

Parallel and perpendicular diffusion

Water diffusion

For perpendicular diffusion, *D* calculated from the mean first passage time

Simulation of silica

persistence probabilities

time / ps

Ideal theory (95 % of models) Poisson-Nernst-Planck + Stokes equations

Stokes for hydrodynamics

 $\eta \vec{\Delta} \vec{\mathrm{v}} + \vec{\mathrm{F}}_{\mathrm{v}} - \vec{\nabla} p = 0$

Fick for ion diffusion

For equilibrium: correspond to Poisson-Boltzmann

Stokes for hydrodynamics $\eta \vec{\Delta} \vec{v} + \vec{F}_v - \vec{\nabla} p = 0$ + incompressible + conditions aux limites

Fick for ion diffusion

$$\frac{\partial c_i}{\partial t} + \operatorname{div}(\mathbf{j}_i^c + \mathbf{j}_i^d) = 0$$

$$\mathbf{j}_i^d = \sum_j L_{ij} \left(-\mathbf{grad} \mu_j + Z_j e \mathbf{E} \right) + Poisson$$

- Non-ideal chemical potential
- L_{ij} depend on the concentration

Consequence for modelling ?

Does not always reduce transport (Walden wrong)

Van Damme et al., J. Phys. Chem. B 2006

$$\mathbf{j}_i^d = \sum_j L_{ij} \left(-\mathbf{grad} \mu_j + Z_j e \mathbf{E} \right) + \text{Poisson}$$

Practical expressions

- Smoluchowski-MSA theory (Ebeling-Turq-Bernard-Dufreche)

- valid up to molar concentrations
- Volume-fixed frame of reference

Homogenization

Derivation of the macroscopic laws (averaged over the geometry of the system)

→ homogenization
Mathematical procedure proposed by
Allaire and Mikelic (*J. Math. Phys.* 51
123103 (2010))
Periodic homogenization in the linear
response regime

General existence theorem

- for not too concentrated solution (molar)
- if the electrolyte charge is not too high (spinodal
- instabilities \rightarrow hydrolysis...)
 - for ideal and non ideal model

Homogenization

Homogenization

Homogenized law

 $\operatorname{div}_{x} \mathcal{J} = 0 \quad in \ \Omega,$ $\mathcal{J} = -\mathcal{M}\mathcal{F} - \mathcal{M}(\mathbf{f}^{*}, \{0\})$

 $\sum_{i=1}^{k} K_{ij}(y) z_j \nabla_y \theta_j^{0,k}(y) \cdot \nu = 0 \text{ on } S.$

We show

- the matrix \mathcal{M} is symmetric (Onsager reciprocal relation) for the ideal and the non ideal model - the matrix \mathcal{M} is positive definite

$$\begin{split} \mathcal{M} & \text{can be calculated from the solution of a time independent} \\ & \text{cell problem (integral equation)}_{-\Delta_y \mathbf{v}^{0,k}(y) + \nabla_y \pi^{0,k}(y) = \mathbf{e}^k + \sum_{j=1}^N z_j n_j^0(y) \nabla_y \theta_j^{0,k}(y) \text{ in } Y_F \\ & \text{Ex:} \\ & \text{div}_y \mathbf{v}^{0,k}(y) = 0 \quad \text{in } Y_F, \quad \mathbf{v}^{0,k}(y) = 0 \text{ on } S, \\ \{\mathbb{K}\}_{lk} = \frac{1}{|Y_F|} \int_{V_F} \mathbf{v}^{0,k}(y) \cdot \mathbf{e}^l \, dy, \qquad -\text{div}_y n_i^0(y) \left(\sum_{i=1}^N K_{ij}(y) z_j \nabla_y \theta_j^{0,k}(y) + \text{Pe}_i \mathbf{v}^{0,k}(y)\right) = 0 \text{ in } Y_F \end{split}$$

Nonlinearity, 26, 881 (2013)

Numerical results

Method

Physica A, accepted *Nonlinearity*, **26**, 881 (2013)

Two dimensional systems FreeFame++ package

Typical values (if not modified) NaCl electrolyte (D_+ =1.333 10⁻⁹ , D_- =2.032 10⁻⁹ m²s⁻¹ Diameter 3.3 Å) in water at 298 K Pore size 3 < I < 50 nm C_{ext} = 0.1 mol.L⁻¹ Surface charge: the one of montmorillonite clays Relative hydraulic permeability (Darcy's law)

(unit: the one of a system with no charges)

- weak effect of the charge
- role of screening
- Non-ideality can enhance/ reduce screening

Relative hydraulic permeability (Darcy's law) (unit: the one of a system with no charges)

If $h << \kappa_{Debye}^{-1}$, ion concentration is uniform \rightarrow weak effect

If $h >> \kappa_{Debye}^{-1}$, screening \rightarrow weak effect

Non-ideality can enhance/reduce screening

Electrodiffusion tensor (unit: the one of a system with no charges) For counterion (Na⁺)

Low porosity: surface diffusion

High porosity: screening

Non-ideality can enhance/reduce diffusion

Physica A, accepted

Electrodiffusion tensor (unit: the one of a system with no charges) For coion (Cl⁻)

Porosity V_{liquid}/ V_{tot}

- Low porosity: no surface diffusion
- High porosity: screening
- Non-ideality can enhance/reduce diffusion

Conclusion

Improving Mesoscopic Models for Electrokinetic Phenomena

One major effects:

Significance of the ideal models compared to realistic models Ideal models are qualitatively correct. No quantitative agreement for

most of the cases (but order of magnitude)

Conclusion

Improving Mesoscopic Models for Electrokinetic Phenomena

Two major effects:

1 Slipping of the surface

increase the electrokinetic flow / hydrophobic surface charge from substitution (clays, AgI, etc.) Poisson-Boltzmann OK

2 Specific adsorption

reduced the electrokinetic flow / hydrophilic surface charge from sites (silica, etc.) Poisson-Boltzmann wrong