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Building realistic amorphous surfaces  

Number of defects (single bonded oxygen) as a function of the 
temperature) from Monte-Carlo simulations of annealing 
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Simulation of silica  

silanol 
per nm2 

Water adsorption isotherms (number of water molecules 
as a function of the external water pressure) 
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Simulation of silica  

With silanol : hydrophilic No silanol : hydrophobic 



Simulation of silica  

         Hydrodynamic Flux (Poiseuille flow) 
NEMD Non equilibrium Molecular Dynamics 
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Simulation of silica  

Water diffusion 
Parallel and perpendicular diffusion 

For perpendicular diffusion, D calculated from the mean first 
passage time 

Mol Phys 111 3410 (2013)
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using the velocity autocorrelation function in the frame of
the Green–Kubo formalism,

D = 1
d

∫ ∞

0
⟨v(t)v(0)⟩ dt, (2)

where v is the particle velocity. Both equations above rely
on the hypothesis of boundary free conditions.

Such methods can also be applied in a confined volume
such as a slit, cylindrical pore or disordered porous materi-
als, if diffusion parallel to surfaces is considered [34–36].
Such a determination is valid for the following reasons:
first, the diffusion coefficient at a given fixed distance of
surface is supposed to be constant, so that sampling the dy-
namics at this distance is relevant for the determination of
the self-diffusion coefficient. Moreover, the hypothesis of
free boundary conditions is valid for displacements parallel
to surfaces.

In a confined space, diffusion coefficients normal to
surfaces cannot be determined by these methods [24]. In-
deed, because of the two aforementioned reasons it would
require to sample displacements in a direction in which
diffusion coefficients vary, and confinement precludes the
use of boundary free conditions. However, the use of ve-
locity autocorrelation functions or MSD, not strictly valid
in confined geometry, has shown to give acceptable values
for diffusion coefficients [5,37].

We study these diffusion coefficients in the frame of
LAPT, coupling numerical estimation with MD simula-
tions. LAPT is an average of MFPT over initial water den-
sity, which is, in the present case, the equilibrium density.

The method we use is similar to a published method
[25], but instead, we use a realistic model for liquid and wall.
Another difference is the inclusion of reflective boundary
conditions, as explicited later. In a first step, the water phase
confined between silica surfaces is divided into parallel lay-
ers, symmetrical with respect to the pore centre. For the two
layers in contact with the surfaces, the boundaries are set
on minimal water density positions (Figure 2). The remain-
der of the slot is divided into three comparable regions.
We run dual simulations, one based on MD and one based
on the Smoluchowski equation [38]. Extraction of LAPT
from MD simulations is straightforward: molecules leav-
ing a layer are excluded. We then have to analyse diffusion
within the frame of Smoluchowski equation. The inclusion
of a non-analytical external potential precludes analytical
solution to Smoluchowski equation.

In the following, we give the details of the mathematical
treatment of the heart of our analysis.

Equilibrium density profiles are given by

ρ(x) = ρ0 e−β(U (x)), (3)

where U is the PMF of the interface, x is the position relative
to the pore centre plane and ρ0 is the bulk density. MD

Figure 2. Half water slits for varying silanol densities. Arrows
indicate layer boundaries, along with xi used in formulas.

provides density distribution, from which the PMF can be
extracted through Equation (3).

We model water dynamics for the generalisation of dif-
fusion equation, that is to say the Fokker–Planck equa-
tion in the strong friction limit. Let pi(x, t) be the out-of-
equilibrium-reduced density of tracers in the ith layer, at
time t and position x. At t = 0, inside a layer, pi(x, 0) =
ρ(x). pi(x, t) is the integral over x0 inside the ith layer of
the conditional probability pi(x, t|x0, 0). Introducing the
forward Smoluchowski operator L in its factorised form,
the derivative of the conditional probability with respect to
time can be expressed as [25]

∂pi(x, t | x0, 0)
∂t

= D

(
∂

∂x
e

−U (x)
kT

∂

∂x
e

U (x)
kT

)
pi(x, t | x0, 0)

≡ L(x) pi(x, t | x0, 0). (4)

The absorbing and reflective boundary conditions are

pi(x, t | x0, 0) = 0 (5)

and

∂pi(x, t | x0, 0)
∂x

= 0. (6)
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2.3. Brownian dynamics

The method we propose for the evaluation of normal dif-
fusion coefficients makes sense only if the Smoluchowski
equation is approximately valid for long times at the vicin-
ity of the surface. To check that assumption, we performed
Brownian dynamics simulations. Thus, the long-time dy-
namics of water molecules has been calculated by the two
approaches (molecular and Brownian dynamics) in every
layer and the validity of the Brownian model has been de-
duced from the comparison of the result.

More precisely, we undertake a reverse modelling, with
the aim to produce the persistence probability in each layer.
If we consider p(x, t) defined above, the persistence proba-
bility in the ith layer is

P (t) =
∫ xi+1

xi

p(x, t) dx. (17)

This quantity can be calculated from Brownian dynamics
thanks to the Ermak algorithm. The trajectories generated
by this algorithm are equivalent to the Smoluchowski equa-
tion, for it only includes the positions of particles, and not
the velocities. If x is the position of the particle, t is the time,
F is the force deriving from the PMF, Di is the diffusion
coefficient in the layer i, k is the Boltzmann constant and T
is the temperature, the algorithm reads [40]

x(t + d t) = x(t) + Di

F (x)
k T

d t + xalea(d t) (18)

with xalea(d t) being a stochastic displacement which sat-
isfies ⟨xalea(d t)⟩ = 0 and ⟨(xalea(d t))2⟩ = 2Did t . Inserting
diffusion coefficients, forces and layer boundaries results
in persistence probabilities, shown in Figure 3. Along with

Figure 3. P(t) are persistence probabilities, in each layer, either
from molecular dynamics or from Brownian dynamics. Brown-
ian dynamics use diffusion coefficients issued of Smoluchowski
analysis. For the sake of clarity, some data are shifted by 1 or 2.

Table 1. Diffusion coefficients parallel D∥ and normal D⊥ to
surfaces, in contact with surface, in the intermediate layer and
in the centre layer, along with the LAPT τ .

OH density 0.0 τ 3.7 τ 7.1 τ

D∥ surface 0.65 0.62 0.30
D⊥ 0.86 40.5 0.73 48.6 0.51 79.4
D∥ intermediate 1.56 1.51 1.54
D⊥ 1.11 10.4 1.01 9.5 1.07 7.4
D∥ centre 2.31 2.17 2.08
D⊥ 1.57 14.8 1.44 9.5 1.26 5.6

Note: OH density in nm−2, diffusion coefficients in 10−9 m2 s−1,
SPC/E bulk diffusion coefficient is 2.5 × 10−9m2 s−1, τ in ps.

these probabilities are plotted the corresponding persistence
probabilities issued from MD.

3. Results and discussion

The above formulas were used to determine the normal self-
diffusion coefficients of water for three types of surfaces:
silanol-free, 3.7 and 7.1 silanols nm−2. MD results (densi-
ties and MFPT) have been averaged over symmetric layers
because silica surfaces are symmetric. Parallel diffusion co-
efficients have been calculated from the autocorrelation of
velocities. Table 1 gives a list of the diffusion coefficients
as well as LAPT for the three surfaces and for the three
layers. The values are also given in Figure 2.

3.1. Validity of the method

The validity of concept of normal diffusion coefficient can
be understood from the persistence probabilities, shown in
Figure 3. Clearly, the agreement between molecular and
Brownian dynamics simulations is excellent: all (but one)
decaying plots from Brownian dynamics match closely the
MD data. Thus the dynamics of water molecules at the
vicinity of the silica surfaces can be modelled in terms of
Brownian model so that the definition of layer-dependent
diffusion coefficients makes sense.

In a single case, namely the outer layer of the most
hydrophilic surface, a small difference can be seen be-
tween persistence probabilities. The persistence obtained
from MD is smaller at short times but greater at long times,
as can be evidenced on the logarithmic plot given in Fig-
ure 4. Such a discrepancy clearly indicates the limitation of
the Smoluchowski approach and the concept of normal dif-
fusion coefficients. This discrepancy cannot be attributed to
the velocity relaxation because it occurs at very long times.
It is an effect of the adsorption kinetics of water molecules
on the surface.

Indeed, whereas the Brownian dynamics persistence
probability is perfectly exponential, the corresponding one
for MD is not. At short time and at long time, the two shown
slopes are a guide for the eyes to identify different decaying
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Figure 4. Persistence probabilities and their logarithms are plot-
ted for the most hydrophilic surface. Two slopes matched on the
molecular dynamics indicate the presence of water populations
with different characteristic times. The Brownian dynamics decay
is perfectly exponential.

modes. Consequently, when the surface is very hydrophilic,
some molecules stay in contact with surface for a long time
(with a typical residence time of 700 ps), whereas further
molecules are free (with an LAPT of 70 ps). This cannot
be evidenced in a mesoscopic description including a PMF,
such as Smoluchowski equation or Brownian dynamics be-
cause only one kind of water molecule is modelled in every
layers. The difference between the decay modes implies that
the calculated LAPT (79.4 ps) and the resulting diffusion
coefficient should in this case be considered as an average
value.

3.2. Qualitative analysis

The LAPTs in Table 1 are direct numerical averages. Fit-
ting an exponential function against SPs gives similar val-
ues [24,25]. The LAPTs depend quadratically on the layer
widths, which have been chosen so as to match density
minima. For this reason, it is not surprising that interme-
diate and centre values do not show any clear trend. When
in contact with surfaces, the increase in hydrophilicity ap-
pears in the increase of LAPT. These results are consistent
with published values [24,25]. As already stated, comparing
persistence times between different methods is improved by
modifying boundaries of one of the methods. If we use water
mass and bulk diffusion coefficient, when fitting Fokker–
Planck equation on diffusion equation, it is an improvement
to increase the boundary layer of the diffusion equation
by 1.25λ = 8.4 pm. This small value, compared to water
layer width, superior to 300 pm, results in small impact on
diffusion coefficients. Liu studied interfaces with vacuum,
where diffusion coefficients increase, and this increases the
magnitude of the correction [24].

We now compare perpendicular and normal coeffi-
cients. When in contact with surface, normal diffusion coef-
ficients are superior to parallel diffusion coefficients. This

can be understood if we consider that normal diffusion
concerns a molecule leaving the surface for a region where
mobility is higher, whereas parallel diffusion is limited by
two-dimensional confinement in a region where mobility is
lower.

In the central layer, the opposite situation appears and
can be explained in the same way: normal diffusion in-
cludes vicinal regions where mobility is lower. If we esti-
mate the distance between the limits of the inner layer to
the density peaks of surface layers, we find around 0.5 nm,
which is small: the inner layer is close to regions of reduced
mobility.

The normal diffusion coefficient reduces upon surface
hydroxylation. In absolute value, this reduction is higher in
the pore centre than at the interface. As expected, for the
small pore size considered here, normal diffusion coeffi-
cients are strongly influenced by the hydrophilicity of the
surface.

3.3. The origin of diffusion coefficient reduction
in the centre layer

All aforementioned diffusion coefficients, either normal or
parallel, are inferior to SPC/E bulk diffusion coefficients.
When water is in contact with surface, this results from the
water–surface interaction. In the central layer, the cause for
this reduction is not obvious. If water can be considered as
bulk water, the confinement has a hydrodynamic effect on
diffusion which can be estimated.

Saugey et al. have proposed a correction for parallel dif-
fusion coefficients in the continuous hydrodynamic scheme
[41]. The parallel diffusion coefficient of a particle between
two walls is reduced from the bulk value following:

D

D0
= 1

1
1− a

z
C( z

δ
) + 1

1− a
H−z

C( H−z
δ

)
− 1

(19)

a being the particle radius, H is the distance between planes,
δ is the slip length and z is the position with respect to one
plane. The radius a is for water an equivalent radius: the
no-slip Stokes’ law relation links the friction coefficient ζ
with a and the viscosity η: ζ = 6πηa. The Einstein relation
links the diffusion coefficient with the friction coefficient
D = kT

ζ
. The resulting equivalent radius reads

a = kT

6πηD
. (20)

With SPC/E values η = 0.729 mPa s [31] and D = 2.5 ×
10−9 m2 s−1 [30], we find a = 0.12 nm.

Inserting the a value into Equation (19), with H = 2 nm,
in the middle of the slot, i.e. for z = H

2 , with slip lengths δ=
0 and 0.3 nm, which are estimated values for slip lengths for
silanol density of respectively equal to 7.1 and 0 nm−2, we
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Zoom: outer layer 7.1 OH nm-2 

2 populations 
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    Only the first layers are dynamically 
different from bulk water 
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Stokes  for hydrodynamics 
 
 
 
Fick for ion diffusion 

Ideal theory (95 % of models) 
 Poisson-Nernst-Planck + Stokes equations  
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+ div
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D
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F ext
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For equilibrium: correspond to Poisson-Boltzmann
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F ext = q
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E ; µ = µ0 + kT lnC

Ideal model 



Stokes  for hydrodynamics 
 
 
 
Fick for ion diffusion 

  

€ 

η
 
Δ 
 v +
 
F v −
 
∇ p = 0 + incompressible + conditions aux limites

€ 

∂ci
∂t

+ div(ji
c + ji

d ) = 0

€ 

ji
d = Lij −gradµ j + Z jeE( )

j
∑ + Poisson

- Non-ideal chemical potential 
- Lij depend on the concentration 
 
Consequence for modelling ? 

More realistic model 



    

€ 

µ = µ0 + kT ln C + kT ln γ
 Definition 

     similar to osmotic coefficient (Gibbs-Duhem) 

CuSO4 ZnCl2

NaCl KCl
€ 

γ

Activity coefficients 



NaCl

KCl

L++

L++ L--

L-- L+-

L+-

Does not always reduce transport 
(Walden wrong)

Onsager coefficients 

Van Damme et al., J. Phys. Chem. B 2006



CuSO4

L++ L-- L+-

Onsager coeffcients 

€ 

ji
d = Lij −gradµ j + Z jeE( )

j
∑ + Poisson

Practical expressions 
 - Smoluchowski-MSA theory (Ebeling-Turq-Bernard-

Dufreche) 
 - valid up to molar concentrations  
 - Volume-fixed frame of reference 
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Derivation of the macroscopic laws 
(averaged over the geometry of the 
system) 

 ! homogenization 
Mathematical procedure proposed by 
Allaire and Mikelic (J. Math. Phys. 51 
123103 (2010)) 
Periodic homogenization in the linear 
response regime 
 
 
  
 

General existence theorem 
 - for not too concentrated solution (molar) 
 - if the electrolyte charge is not too high (spinodal 

instabilities ! hydrolysis…) 
 - for ideal and non ideal model 

Homogenization 



Homogenization 

Then, we can decompose the solution of (75)-(81) as

u0(x, y) =
d
∑

k=1

(

−v0,k(y)

(
∂p0

∂xk
+ f ∗

k

)

(x) +
N
∑

i=1

vi,k(y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)

)

(93)

p1(x, y) =
d
∑

k=1

(

−π0,k(y)

(
∂p0

∂xk
+ f ∗

k

)

(x) +
N
∑

i=1

πi,k(y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)

)

(94)

Φ1
j(x, y) =

d
∑

k=1

(

−θ0,kj (y)

(
∂p0

∂xk
+ f ∗

k

)

(x) +
N
∑

i=1

θi,kj (y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)

)

. (95)

We average (93)-(95) in order to get a purely macroscopic homogenized problem. We
define the homogenized quantities: first, the electrochemical potential

µj(x) = −zj(Φ
0
j (x) +Ψext,∗(x)), (96)

then, the ionic flux of the jth species

jj(x) =
1

|YF |

∫

YF

n0
j (y)

( N
∑

l=1

Kjl(y)
zl
Pej

(

∇yΦ
1
l (x, y)+∇xΦ

0
l (x)+E∗(x)

)

+u0

)

dy, (97)

and finally the filtration velocity

u(x) =
1

|YF |

∫

YF

u0(x, y) dy. (98)

From (93)-(95) we deduce the homogenized or upscaled equations for the above ef-
fective fields.

Proposition 15. Introducing the flux J (x) = (u, {jj}1≤j≤N) and the gradient F(x) =
(∇xp0, {∇xµj}1≤j≤N), the macroscopic equations are

divxJ = 0 in Ω, (99)

J = −MF −M(f∗, {0}), (100)

with a homogenized tensor M defined by
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define the homogenized quantities: first, the electrochemical potential

µj(x) = −zj(Φ
0
j (x) +Ψext,∗(x)), (96)

then, the ionic flux of the jth species

jj(x) =
1

|YF |

∫

YF

n0
j (y)

( N
∑

l=1

Kjl(y)
zl
Pej

(

∇yΦ
1
l (x, y)+∇xΦ

0
l (x)+E∗(x)

)

+u0

)

dy, (97)

and finally the filtration velocity

u(x) =
1

|YF |

∫

YF

u0(x, y) dy. (98)

From (93)-(95) we deduce the homogenized or upscaled equations for the above ef-
fective fields.

Proposition 15. Introducing the flux J (x) = (u, {jj}1≤j≤N) and the gradient F(x) =
(∇xp0, {∇xµj}1≤j≤N), the macroscopic equations are

divxJ = 0 in Ω, (99)

J = −MF −M(f∗, {0}), (100)

with a homogenized tensor M defined by

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K
J1

z1
. . .

JN

zN

L1
D11

z1
· · ·

D1N

zN
...

...
. . .

...

LN
DN1

z1
· · ·

DNN

zN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (101)
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Homogenized law 
 

We show 
 - the matrix M  is symmetric 

(Onsager reciprocal relation) for the 
ideal and the non ideal model 

 - the matrix M  is positive 
definite  
    M  can be calculated from the solution of a time independent 

cell problem (integral equation) 
Ex: 

and complemented with periodic boundary conditions for p0 and {Φ0
j}1≤j≤N . The

matrices Ji, K, Dji and Lj are defined by their entries

{Ji}lk =
1

|YF |

∫

YF

vi,k(y) · el dy,

{K}lk =
1

|YF |

∫

YF

v0,k(y) · el dy,

{Dji}lk =
1

|YF |

∫

YF

n0
j (y)

(

vi,k(y) +
N
∑

m=1

Kjm(y)
zm
Pej

(

δime
k +∇yθ

i,k
m (y)

)
)

· el dy,

{Lj}lk =
1

|YF |

∫

YF

n0
j (y)

(

v0,k(y) +
N
∑

m=1

Kjm(y)
zm
Pej

∇yθ
0,k
m (y)

)

· el dy.

Furthermore, M is symmetric positive definite, which implies that the homogenized
equations (99)-(100) have a unique solution.

Remark 16. The symmetry of M is equivalent to the famous Onsager’s reciprocal
relations. In the ideal case, the symmetry of the tensor M was proved in [35], [5].

Proof. The conservation law (99) is just a rewriting of (77) and (80). The constitutive
equation (100) is an immediate consequence of the definitions (97) and (98) of the
homogenized fluxes, taking into account the decomposition (93)-(95).

We now prove thatM is positive definite. For any collection of vectors λ0, {λi}1≤i≤N ∈
Rd let us introduce the following linear combinations of the cell solutions

vλ =
d
∑

k=1

(

λ0kv
0,k +

N
∑

i=1

λikv
i,k

)

, θλj =
d
∑

k=1

(

λ0kθ
0,k
j +

N
∑

i=1

λikθ
i,k
j

)

, (102)

which satisfy

−∆yv
λ(y) +∇yπ

λ(y) = λ0 +
N
∑

j=1

zjn
0
j (y)

(

λj +∇yθ
λ
j (y)

)

in YF (103)

divyv
λ(y) = 0 in YF , vλ(y) = 0 on S, (104)

−divy

(

n0
i (y)

(
N
∑

j=1

zjKij(λ
j +∇yθ

λ
j (y)) + Peiv

λ(y)

))

= 0 in YF (105)

N
∑

j=1

zjKij(λ
j +∇yθ

λ
j (y)) · ν = 0 on S, (106)
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The main idea is to recognize in the two-scale homogenized problem (75)-(81) that
there are two different macroscopic fluxes, namely (∇xp0(x)+ f∗(x)) and {∇xΦ0

j (x)+
E∗(x)}1≤j≤N . Therefore we introduce two family of cell problems, indexed by k ∈
{1, ..., d} for each component of these fluxes. We denote by {ek}1≤k≤d the canonical
basis of Rd.

The first cell problem, corresponding to the macroscopic pressure gradient, is

−∆yv
0,k(y) +∇yπ

0,k(y) = ek +
N∑

j=1

zjn
0
j (y)∇yθ

0,k
j (y) in YF (85)

divyv
0,k(y) = 0 in YF , v0,k(y) = 0 on S, (86)

−divyn
0
i (y)

( N
∑

j=1

Kij(y)zj∇yθ
0,k
j (y) + Peiv

0,k(y)

)

= 0 in YF (87)

N
∑

j=1

Kij(y)zj∇yθ
0,k
j (y) · ν = 0 on S. (88)

The second cell problem, corresponding to the macroscopic diffusive flux, is for each
species l ∈ {1, ..., N}

−∆yv
l,k(y) +∇yπ

l,k(y) =
N
∑

j=1

zjn
0
j(y)(δlje

k +∇yθ
l,k
j (y)) in YF (89)

divyv
l,k(y) = 0 in YF , vl,k(y) = 0 on S, (90)

−divyn
0
i (y)

( N
∑

j=1

Kij(y)zj
(

δlje
k +∇yθ

l,k
j (y)

)

+ Peiv
l,k(y)

)

= 0 in YF (91)

N
∑

j=1

Kij(y)zj
(

δlje
k +∇yθ

l,k
j (y)

)

· ν = 0 on S, (92)

where δij is the Kronecker symbol. As usual the cell problems are complemented with
periodic boundary conditions.
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Numerical results 

Figure 1: Mesh for a periodicity cell with ellipsoidal inclusions (porosity is equal to 0.62)

13.33e−10m2/s and species j = 2 the anion Cl− (z2 = −1) withD0
2 = 20.32e−10m2/s

(note that this is the opposite convention of the previous sections where z1 < 0 < z2).
The hard sphere diameters of the two species are considered equal to 3.3e−10m. This
model of NaCl electrolyte solution is able to reproduce both the equilibrium (activ-
ity coefficients, osmotic pressure) and the transport coefficients (conductivity, Hittorf
transference number [49], self and mutual diffusion coefficient of the electrolyte) up to
molar concentrations. The infinite dilution concentrations of the species are consid-
ered equal, n0

1(∞) = n0
2(∞), and the characteristic concentration is nc = 0.1mole/l.

The dynamic viscosity η is equal to 0.89e−3 kg/(m s). Instead of using the formula
of Table 1 for defining the Debye length, we use the following definition (as in the
introduction)

λD =

√

EkBT
e2
∑N

j=1 njz2j
,

which differs by a factor of
√
2 in the present case of two monovalent ions. Other

physical values are to be found in Table 1. Following [6] two model geometries are
considered. The first one features ellipsoid solid inclusions (see Figure 1), for which
we perform variations of concentrations from 10−3 to 1mol/l and variations of the
pore size (3 ≤ ℓ ≤ 50 nm). The second one is a rectangular model (see Figure 2)
which allows us to perform porosity variation.

43

Method 
Two dimensional systems 
FreeFame++ package 
 

Figure 2: Meshes for three different porosities (0.19, 0.51 and 0.75) of a periodic cell with rectangular
inclusions

7.1. Variation of the concentration

Here we consider the geometry with ellipsoidal inclusions (Figure 1). We vary
the infinite dilution concentrations n0

j (∞) in the range (10−2, 10) or, equivalently
through (130), the dimensional infinite dilution concentrations n∗

j (∞) varies from
10−3 to 1mol/l. The pore size is ℓ=50 nm. Varying proportionally all values of
n0
j (∞) is equivalent to varying the parameter β in the Poisson-Boltzmann equation

(73).
As can be checked on Figure 3, except for very small concentrations, the cell-

average of the concentrations |YF |−1
∫

YF
nj(y) dy is almost equal to the infinite dilu-

tion concentrations n0
j (∞). This is clear in the ideal case, but in the MSA case the

cell-average of the concentrations is slightly smaller than the infinite dilution concen-
trations for large concentrations. It is a manifestation of the packing effect which
forbids the boundary layer to be too thin in the MSA setting. The behavior of Figure
3 (bottom) which represents the Donnan effect was expected. For small dilutions
the MSA concentration is higher than the ideal one because the electrolyte is in the
attractive electrostatic regime so that there is a tendancy of incorporating anions.
It is the opposite for large dilutions : the electrolyte is in the repulsive hard sphere
regime and the excluded volumes expel the anions.

Since the permeability tensor K depends on the pore size ℓ, we renormalize its
entries by dividing them by the corresponding ones for a pure filtration problem (com-
puted through the usual Stokes cell problems [28]). The resulting relative permeability
coefficients are plotted on Figure 4: the smaller the infinite dilution concentration,
the smaller the permeability. We clearly see an asymptotic limit of the relative per-
meability tensor not only for high concentrations but also for low concentrations. In
the latter regime, the hydrodynamic flux is reduced: the electrostatic attraction of
the counterions with respect to the surface slows down the fluid motion. This effect
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Typical values (if not modified) 
NaCl electrolyte (D+ =1.333 10-9  , D- =2.032 10-9 m2s-1 
Diameter  3.3 Å) in water at 298 K 
Pore size 3 < l < 50 nm  Cext = 0.1 mol.L-1 
Surface charge: the one of montmorillonite clays 
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Numerical results 
MSA no 6

�k = 3.3e � 10m, la concentration caractéristique est
nc = 0.1mole/l et la viscosité dynamique est
⌘ = 0.89e�3 kg/(m s). 3  `  50 nm .

Figure: La perméabilité: K11 et K22, comme fonctions de n⇤j (1) (la
concentration à dilution infini)

Andro Mikelić Electrocinétique des milieux poreux déformables

Figure 1: Mesh for a periodicity cell with ellipsoidal inclusions (porosity is equal to 0.62)

13.33e−10m2/s and species j = 2 the anion Cl− (z2 = −1) withD0
2 = 20.32e−10m2/s

(note that this is the opposite convention of the previous sections where z1 < 0 < z2).
The hard sphere diameters of the two species are considered equal to 3.3e−10m. This
model of NaCl electrolyte solution is able to reproduce both the equilibrium (activ-
ity coefficients, osmotic pressure) and the transport coefficients (conductivity, Hittorf
transference number [49], self and mutual diffusion coefficient of the electrolyte) up to
molar concentrations. The infinite dilution concentrations of the species are consid-
ered equal, n0

1(∞) = n0
2(∞), and the characteristic concentration is nc = 0.1mole/l.

The dynamic viscosity η is equal to 0.89e−3 kg/(m s). Instead of using the formula
of Table 1 for defining the Debye length, we use the following definition (as in the
introduction)

λD =

√

EkBT
e2
∑N

j=1 njz2j
,

which differs by a factor of
√
2 in the present case of two monovalent ions. Other

physical values are to be found in Table 1. Following [6] two model geometries are
considered. The first one features ellipsoid solid inclusions (see Figure 1), for which
we perform variations of concentrations from 10−3 to 1mol/l and variations of the
pore size (3 ≤ ℓ ≤ 50 nm). The second one is a rectangular model (see Figure 2)
which allows us to perform porosity variation.
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Relative hydraulic permeability (Darcy’s law) 
(unit: the one of a system with no charges) 

-  weak effect 
of the charge 

-  role of 
screening 

-  Non-ideality 
can enhance/
reduce 
screening Cext  / mol.L-1
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Numerical results 

Figure 1: Mesh for a periodicity cell with ellipsoidal inclusions (porosity is equal to 0.62)

13.33e−10m2/s and species j = 2 the anion Cl− (z2 = −1) withD0
2 = 20.32e−10m2/s

(note that this is the opposite convention of the previous sections where z1 < 0 < z2).
The hard sphere diameters of the two species are considered equal to 3.3e−10m. This
model of NaCl electrolyte solution is able to reproduce both the equilibrium (activ-
ity coefficients, osmotic pressure) and the transport coefficients (conductivity, Hittorf
transference number [49], self and mutual diffusion coefficient of the electrolyte) up to
molar concentrations. The infinite dilution concentrations of the species are consid-
ered equal, n0

1(∞) = n0
2(∞), and the characteristic concentration is nc = 0.1mole/l.

The dynamic viscosity η is equal to 0.89e−3 kg/(m s). Instead of using the formula
of Table 1 for defining the Debye length, we use the following definition (as in the
introduction)

λD =

√

EkBT
e2
∑N

j=1 njz2j
,

which differs by a factor of
√
2 in the present case of two monovalent ions. Other

physical values are to be found in Table 1. Following [6] two model geometries are
considered. The first one features ellipsoid solid inclusions (see Figure 1), for which
we perform variations of concentrations from 10−3 to 1mol/l and variations of the
pore size (3 ≤ ℓ ≤ 50 nm). The second one is a rectangular model (see Figure 2)
which allows us to perform porosity variation.
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Relative hydraulic permeability (Darcy’s law) 
(unit: the one of a system with no charges) 

-  If h << κDebye
-1, ion 

concentration is 
uniform! weak 
effect 

-  If h >> κDebye
-1,  

screening! weak 
effect 

-  Non-ideality can 
enhance/reduce 
screening 

MSA no 9

Figure: La perméabilité K11 et K22 en fonction de la taille des pores `
(nm)

Andro Mikelić Electrocinétique des milieux poreux déformables

pore size h / nm
Physica A, accepted



MSA no 10

Figure: Le tenseur électrodi↵usif D11 en fonction de la porosité
(n⇤j (1) = 0.1mole/l )

Andro Mikelić Electrocinétique des milieux poreux déformables

Numerical results 

Electrodiffusion tensor 
(unit: the one of a system with no charges) 
For counterion (Na+) 

-  Low porosity: 
surface diffusion 

-  High porosity: 
screening 

-  Non-ideality can 
enhance/reduce 
diffusion 

Figure 2: Meshes for three different porosities (0.19, 0.51 and 0.75) of a periodic cell with rectangular
inclusions

7.1. Variation of the concentration

Here we consider the geometry with ellipsoidal inclusions (Figure 1). We vary
the infinite dilution concentrations n0

j (∞) in the range (10−2, 10) or, equivalently
through (130), the dimensional infinite dilution concentrations n∗

j (∞) varies from
10−3 to 1mol/l. The pore size is ℓ=50 nm. Varying proportionally all values of
n0
j (∞) is equivalent to varying the parameter β in the Poisson-Boltzmann equation

(73).
As can be checked on Figure 3, except for very small concentrations, the cell-

average of the concentrations |YF |−1
∫

YF
nj(y) dy is almost equal to the infinite dilu-

tion concentrations n0
j (∞). This is clear in the ideal case, but in the MSA case the

cell-average of the concentrations is slightly smaller than the infinite dilution concen-
trations for large concentrations. It is a manifestation of the packing effect which
forbids the boundary layer to be too thin in the MSA setting. The behavior of Figure
3 (bottom) which represents the Donnan effect was expected. For small dilutions
the MSA concentration is higher than the ideal one because the electrolyte is in the
attractive electrostatic regime so that there is a tendancy of incorporating anions.
It is the opposite for large dilutions : the electrolyte is in the repulsive hard sphere
regime and the excluded volumes expel the anions.

Since the permeability tensor K depends on the pore size ℓ, we renormalize its
entries by dividing them by the corresponding ones for a pure filtration problem (com-
puted through the usual Stokes cell problems [28]). The resulting relative permeability
coefficients are plotted on Figure 4: the smaller the infinite dilution concentration,
the smaller the permeability. We clearly see an asymptotic limit of the relative per-
meability tensor not only for high concentrations but also for low concentrations. In
the latter regime, the hydrodynamic flux is reduced: the electrostatic attraction of
the counterions with respect to the surface slows down the fluid motion. This effect
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Numerical results 

Electrodiffusion tensor 
(unit: the one of a system with no charges) 
For coion (Cl-) 

-  Low porosity: no 
surface diffusion 

-  High porosity: 
screening 

-  Non-ideality can 
enhance/reduce 
diffusion 

Figure 2: Meshes for three different porosities (0.19, 0.51 and 0.75) of a periodic cell with rectangular
inclusions

7.1. Variation of the concentration

Here we consider the geometry with ellipsoidal inclusions (Figure 1). We vary
the infinite dilution concentrations n0

j (∞) in the range (10−2, 10) or, equivalently
through (130), the dimensional infinite dilution concentrations n∗

j (∞) varies from
10−3 to 1mol/l. The pore size is ℓ=50 nm. Varying proportionally all values of
n0
j (∞) is equivalent to varying the parameter β in the Poisson-Boltzmann equation

(73).
As can be checked on Figure 3, except for very small concentrations, the cell-

average of the concentrations |YF |−1
∫

YF
nj(y) dy is almost equal to the infinite dilu-

tion concentrations n0
j (∞). This is clear in the ideal case, but in the MSA case the

cell-average of the concentrations is slightly smaller than the infinite dilution concen-
trations for large concentrations. It is a manifestation of the packing effect which
forbids the boundary layer to be too thin in the MSA setting. The behavior of Figure
3 (bottom) which represents the Donnan effect was expected. For small dilutions
the MSA concentration is higher than the ideal one because the electrolyte is in the
attractive electrostatic regime so that there is a tendancy of incorporating anions.
It is the opposite for large dilutions : the electrolyte is in the repulsive hard sphere
regime and the excluded volumes expel the anions.

Since the permeability tensor K depends on the pore size ℓ, we renormalize its
entries by dividing them by the corresponding ones for a pure filtration problem (com-
puted through the usual Stokes cell problems [28]). The resulting relative permeability
coefficients are plotted on Figure 4: the smaller the infinite dilution concentration,
the smaller the permeability. We clearly see an asymptotic limit of the relative per-
meability tensor not only for high concentrations but also for low concentrations. In
the latter regime, the hydrodynamic flux is reduced: the electrostatic attraction of
the counterions with respect to the surface slows down the fluid motion. This effect
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Porosity Vliquid/ Vtot

Figure 13: Electrodiffusion tensor D11 for the cation versus porosity (n∗

j(∞) = 0.1mole/l)

Figure 14: Electrodiffusion tensor D22 for the anion versus porosity (n∗

j (∞) = 0.1mole/l)
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Conclusion 

Improving Mesoscopic Models for Electrokinetic Phenomena 
 

One major effects: 
 Significance of the ideal models compared to realistic  models 
 Ideal models are qualitatively correct. No quantitative agreement for 

most of the cases (but order of magnitude) 



Conclusion 

Improving Mesoscopic Models for Electrokinetic Phenomena 
 

Two major effects: 
 1 Slipping of the surface 
      increase the electrokinetic flow / hydrophobic surface 
      charge from substitution (clays, AgI, etc.) Poisson-Boltzmann OK
  

 2 Specific adsorption 
      reduced the electrokinetic flow / hydrophilic surface 
      charge from sites (silica, etc.) Poisson-Boltzmann wrong 


