

Fractionnement des éléments en traces entre fluide et uraninite:

de nouvelles contraintes sur la composition des fluides minéralisateurs à l'origine des gisements d'uranium hydrothermaux

Projet URAFRAC du NEEDS

Maxime DARGENT, Laurent TRUCHE, Jean DUBESSY

GoRessources, Université de Lorraine, France

Journées scientifiques du NEEDS – Nantes – 21 et 22 octobre

Contexte géologique et problématiques

Mercadier et al., 2011 Richard et al., 2011

Gisements d'U sous discordance

Tonnages et concentrations exceptionnels (jusqu'à 200 kt U à 20% U, McArthur River)

Contexte géologique et problématiques

- U(VI) concentré jusqu'à 500 ppm
- Fluides riches en NaCl et CaCl₂ ([NaCl] = 6 à 9 m)
- pH < 4 : Solubilité de l'U(VI) maximale

Saumures chlorurées acides

Richard et al., 2010, 2011

Transport de l'U(VI) dans les fluides minéralisateurs

Rôle des saumures chlorurées acides dans le transport de l'U(VI) et spéciation dans ces fluides minéralisateurs

Etude spectroscopie Raman - Dargent et al. (2013) - et EXAFS.

- Fort pouvoir complexant des chlorures : explique les fortes concentrations en U dans ces saumures.
- Transport de l'U sous forme d'un mélange de complexes $UO_2CI_n^{2-n}$ (n = 0 5).
- Calcul de constantes de complexation à haute température.

Contexte géologique et problématiques

Processus minéralisateur: $UO_2^{2+}_{aq} + 2 e^- \rightarrow (UO_2)_{uraninite}$ \downarrow ???

Contexte géologique et problématiques

H₂ CH₄ C Fe²⁺
 C-graphite : Souvent au contact de la minéralisation mais pas toujours

- C-graphite : Souvent au contact de la minéralisation mais pas toujours
- CH₄: Interaction entre saumures et métasédiments du socle riches en graphite
- Fer(II) : Réaction redox avec pyrite/pyrrhotite, illitisation/chloritisation
- H₂ : Radiolyse de l'eau, altération de minéraux ferreux du socle

Signatures des éléments en trace dans UO₂

→ indicateurs des conditions de dépôt?

 \rightarrow Pas d'information sur la chimie du fluide

Les questions à résoudre

- Capacité du C-graphite, CH₄, Fer(II) et H₂ à réduire l'U(VI) dans les ces fluides transporteurs ?
- Cinétiques de réduction associées aux différents donneurs d'électrons et contraintes sur la dynamique de formation des gisements d'U?
- Fractionnement des éléments en trace entre fluide et uraninite lors de la précipitation – Rôle de la composition du fluide minéralisateur?

cinétique de précipitation d'UO₂

Autoclaves Titane chargés en conditions anoxiques

Injection de gaz/échantillonage

[U] analysé par ICP-OES

Mesure de la cinétique réactionnelle

Etude paramétrique (T, Cl, pH, f(H₂))

Four

```
Phase vapeur H<sub>2</sub> ou CH<sub>4</sub>
```

Phase liquide (UO_2CI_2 (10⁻³ M), HCI (0.1 M), LiCl (+ ETR)

Fe²⁺ (FeCl₂)

Bol en téflon dans autoclave Ti

Solide C-graphite

Validité du protocole expérimental

Après expérience

Validité du protocole expérimental

Effet de la température

Effet de la P(H₂)

Effet de la P(H₂)

Réduction à faible P(H₂)

Effet de la chlorinité

Comparaison de différents agents réducteurs

	Réactivité	
lente		Rapide
С	CH₄	H ₂

Contraintes sur la dynamique de l'épisode minéralisateur

La dynamique de formation des gisements d'U sous discordance est controlée par:

- Flux d'U en solution
- Génération d'agents réducteurs mobiles

La vitesse de réduction n'est pas limitante si le donneur d'e est non limitant

Fractionnement des ETR entre fluide et UO₂

- **Contraintes** cristallographiques
- **Contraintes physico-**_ chimiques

Nd

Υ

Lattice Strain Theory (Blundy and Wood, 2003)

log (partition coefficient)

Fractionnement des ETR entre fluide et UO₂

Temps (Heures)

Fractionnement des ETR entre fluide et UO₂

Modèle génétique

 Réducteurs gazeux plus réactifs et plus mobiles: Permettent de réduire l'U(VI) sur un volume important

 Fractionnements des ETR entre fluide et uraninite peuvent être mesurés expérimentalement

un bon outil pour reconstruire les conditions physico-chimiques des épisodes minéralisateurs

Dépôt : Conclusions et perspectives

Dépôt

- Réducteurs gazeux plus réactifs et plus mobiles: Permettent de réduire l'U(VI) sur un volume important
 - Peut expliquer en partie les minéralisations massives d'UO₂ caractéristiques des gisements d'U sous discordance
- Importance de H₂ très réactif à de faibles pressions : production par le buffer PPM ou par altération d'assemblages minéralogiques ferreux, radiolyse ? Provenance de ces gaz à fort pouvoir réducteur ?
- Fractionnements des ETR entre fluide et uraninite peuvent être mesurés expérimentalement – un bon outil pour reconstruire les conditions physico-chimiques des épisodes minéralisateurs

Les solutions

- UO₂Cl₂ à 0.01 M
- Chlorures apportés par LiCl (0.3, 1, 3, 5, 8, et 12 M)
- Solutions acidifiées par HCl (pH ≤ 1 at 25 °C)

Dispositif expérimental : Capillaires en silice pure

- Transparent dans le domaine du visible
- Inerte chimiquement avec la solution
- Pas de fluorescence générée par le contenant

Dispositif expérimental: Capillaires en silice pure

- Capillaires chauffés entre 25 °C et 350 °C à pression de vapeur saturante
- Spectres Raman de la vibration O-U-O de l'uranyle

Resultats

v (cm⁻¹)

Resultats

- Complexes $UO_2CI_n^{2-n}$ (n = 1 à 5)
- Une espèce non identifiée majoritaire à haute chlorinité ([LiCI] > 3 M) et HT (T > 150 °C)
- Calcul des constantes de complexation à HT

Dargent et al., 2013

Resultats

l

 $log_{10} y_{1} = -z_{1}^{2} D$

 $m_{UO_2Cl_n^{2-n}}^i = \frac{A_{UO_2Cl_n^{2-n}}^i \times m_{T,UO_2^{2+}}}{A_T^i}$

$$UO_{2}^{2+}(aq) + nCI^{-}(aq) = UO_{2}CI_{n}^{2-n}(aq)$$

$$(aq)$$

$$(m : molalité (mol/kgH_{2}O))$$

$$(A_{T} : Aire sous la bande totale)$$

$$(uranyle)$$

de

$$og_{10}K_{n+1}^{i} = log_{10} \frac{m_{UO_2Cl_{n+1}}^{i^{2-(n+1)}}}{m_{UO_2Cl_n}^{i^{2-n}} \times m_{Cl^-}^{i^{2-(n+1)}}} + log_{10} \frac{\gamma_{UO_2Cl_{n+1}}^{i^{2-(n+1)}}}{\gamma_{UO_2Cl_n}^{i^{2-n}} \times \gamma_{Cl^-}^{i^{2-(n+1)}}} \xrightarrow{A_j: \text{ Aire sous la bande de l'espèce}}_{\substack{\gamma: \text{ Coefficient d'activité}}}$$

Spéciation : Spectroscopie d'absorption X

Dispositif experimental : Cellule en carbone vitreux

- Expériences réalisée sur la ligne FAME, ESRF de Grenoble
- Cellule inerte avec les solutions expérimentales
- Solutions chauffée jusqu'à 350 °C-300 bar
- Spectres au seuil d'absorption L_{III} de l'U (17,166 keV)

Testemale, 2005 ; Prokovski, 2008

Spéciation : Spectroscopie d'absorption X

Resultats

Spéciation : Spectroscopie d'absorption X

Resultats

12 M LiCl

d U-Oax N_Oeq d U-Oax d U-Oax N_Oax N_CI (Å) (Å) (Å) T = 350 °C 0 Fourrier transformée 3.2±0.9 2.39±0.06/0 2.6±0.4/6 2.66±0.08 T = 300 °C 0 3.0±0.8 2.33±0.05/0 3.2±0.3/6 2.64±0.02 T = 250 °C 2 1.76±0.01 0.8±0.2 2.26±0.06 4.2±0.2 2.67±0.02 T = 200 °C 1.76±0.01 0.9±0.3 2.27±0.09 4.1±0.3 2.68±0.02 2 T = 150 °C 2 1.77±0.01 1.2±0.4 2.34±0.14 3.8±0.4 2.69±0.02 T = 100 °C 2 1.76±0.01 2.7±0.5 2.53±0.11 2.3±0.5 2.69±0.04 T = 25 °C 2 1.75±0.01 3.0±0.3 2.51±0.13 2.0±0.3 2.72±0.04 0 2

Distance (Å)

Oax Oeq Cl

