

Institut des Sciences de la Terre

Mineral nucleation in nanopores and on flat surfaces: Understanding interfacial energy controls using in situ synchrotron techniques

Alex Fernandez-Martinez ISTerre, France

Institut des Sciences de la Terre

Mineral nucleation on flat surfaces: Thermodynamics of carbonate mineral heterogeneous nucleation

Alex Fernandez-Martinez ISTerre, France Yandi Hu, Young-Shin Jun WUStL, USA Byeongdu Lee APS, USA Glenn A. Waychunas Earth Sciences Division, LBNL, USA

OSUG

Complex geological media offer loci for nucleation

- Large surface areas (cap rock): ubiquitous presence of mineral surfaces
- High salinity, high organic content
- High pressure and temperature

How does the presence of a mineral substrate affect the thermodynamics of mineral nucleation?

Thermodynamics and kinetics of nucleation

The interplay of thermodynamic (free energy landscape) and kinetic factors (ion pairing, de-hydration barriers, cluster sticking coefficients..) drive mineral nucleation and growth

Thermodynamics and kinetics of nucleation

from DeYoreo and Vekilov (2003)

- If $\alpha_{ls} > \alpha_{sc}$ then $\alpha' < \alpha_{lc} \longrightarrow$ Heterogeneous nucleation
- If $\alpha_{ls} = \alpha_{sc}$ then $\alpha' = \alpha_{lc} \longrightarrow$ Cross-over homogeneous/
- heterogeneous nucleation
- If $\alpha_{ls} < \alpha_{sc}$ then $\alpha' > \alpha_{lc} \longrightarrow$ Homogeneous nucleation

The interplay between the different interfacial energies will determine the nature of the nucleation process and the spatial distribution of the precipitate

Mineral nucleation on mineral surfaces: GISAXS

Jun and Waychunas, ES&T (2010)

- Surface-sensitive technique
- Resolves particle sizes ranging from 0.5 to 500 nm
- Gives size and shape information of very first nucleated CaCO₃ particles on mineral surfaces

12IDB - APS @ 12 KeV

Small Angle X-ray Scattering

Experimental conditions: CaCO₃ on quartz (100)

STerre

• Experiments performed in an open system (constant σ) by keeping a constant flow over the substrate

$$\sigma = \ln \left\{ \frac{\left(Ca^{2+}\right)\left(CO_3^{2-}\right)}{K_{spCaCQ_3}} \right\}$$

SAMPLE	[Ca²+] (M)	[HCO₃ ⁻] (M)	рН	σ calcite (log ₁₀ (IAP/Ks))	σ vaterite (log ₁₀ (IAP/K s))	σ ACC (log ₁₀ (IAP/Ks))
S1	0.05	0.01	7.60	3.98(1.73)	2.67(1.59)	-0.35(-0.81)
S2	0.05	0.007	7.61	3.77(1.64)	2.46(1.5)	-0.44(-1.64)
S3	0.05	0.005	7.59	3.31(1.44)	2.0(1.3)	-0.64(-1.48)
S4	0.01	0.004	7.85	2.76(1.20)	1.45(1.06)	-0.88(-2.03)
S 5	0.01	0.002	7.59	2.16(0.94)	0.85(0.8)	-1.14(-2.62)

8

Carbonate nucleation on mineral surfaces: GISAXS

- Particle scattering: ~2nm particles nucleated on quartz (100)
- Increase of the intensity with time with no change in size

• Total volume of CaCO₃ can be calculated using the invariant (Q), which in this case, with nucleation dominating over growth, will be proportional to the nucleation rate:

$$V(q) \approx NV^2(\rho_1 - \rho_2)^2 P(q)S(q)$$

$$Q = \int_{q_{\min}}^{q_{\max}} I(q) q^2 dq$$

Carbonate nucleation on mineral surfaces: GISAXS

11

$$\alpha' = \alpha_{lc} \{ 1 - (\alpha_{ls} - \alpha_{sc}) / 2\alpha_{lc} \}$$
36 120* 360+ 192 120*

* Average of values from:

- Bennema & Sohnel, J. Crys. Grow. (1990)
- Duffy & Harding, Langmuir (2004)
- Sohnel & Mullin, J. Crys. Grow. (1978)
- Liu & Lin, JACS (2003)
- + Average value between the values in:
- Parks, Geophys. Res. Lett. (1984)
- Mizele et al. Surf. Sci. (1985)

(other values in the literature are well above or below this value)

Conclusions

• Grazing Incidence Small-angle X-ray scattering allows probing nucleation processes relevant to that carbonate mineralization in geological reservoirs. It allows obtaining interfacial energies from the systems under study.

 The obtained CaCO₃/quartz interfacial free energy is lower than the water/quartz interfacial free energy, showing a preference for nucleation on the substrate

• Hydrophobicity and surface mismatch will govern heterogeneous nucleation at the subsurface.

Institut des Sciences de la Terre

Nucleation in confinement

OSUG Observatoire des

Grenoble

Andrew Stack Oak Ridge National Laboratory, USA Alex Fernandez-Martinez ISTerre, Grenoble, France Dave Cole Ohio State University, USA Glenn A. Waychunas Earth Sciences Division, LBNL, USA

Nucleation in confinement

Nucleation in confinement

Synergistic experimental – modeling approach

Mesoporous silica materials

Tunable pore sizes from 2 – 100 nm

Statistical mechanics models

A synergistic experimental – modeling approach has been adopted to study the effect of confinement on carbonate mineral nucleation and growthin nanopores

STerre

Stack, Fernandez-Martinez, Rother, Waychunas, Cole

Nucleation in confinement: in situ SAXS

Nucleation in confinement: functionalization

functionalization

 \geq

Nucleation in confinement: in situ SAXS

Functionalized CPG materials: carboxyl – terminated SiO₂ $\sigma = 1$ CaCO₃ solution T = 90°C

Precipitation in nano pores

Conclusions

- CaCO₃ precipitation only in large pores (inter-grain) of pure SiO₂ porous materials
- CaCO₃ precipitation inside the nanopores after surface modification
- (Again) SAXS offers a unique capability to observe precipitation IN pores
- Confinement effects?

In situ techniques

 In situ experiments allow the determination of thermodynamic parameters such as interfacial free energies

 Scattering techniques probing nm-scale nuclei can give information about thermodynamics of nucleation

Portable chemical reactor installed at beamline ID15 (ESRF) for in situ synchrotron experiments

lerre

- Control of pH, eH, titrations, stirring rate, pO2 and T
- Remotely controlled from the beamline hutch
- In situ High Energy X-ray Diffraction experiments and PDF analyses

Acknowledgements

Bora Kalkan Simon Clark Lester Hedges Steve Whitelam Adam Wallace Jim De Yoreo Glenn Waychunas

Dave Cole

Andrew Stack Gernot Rother Leo Banuelos

Yandi Hu Jessica Ray Young-Shin Jun

Washington University in St.Louis School of Engineering & Applied Science

See poster: Échange Anionique de Radionucléides dans des Phases Cimentaires Sulfatés

 $Ca_4AI_2(OH)_{12}$ · X·(2-6)H₂O

 $X = SO_4^{2-}, 2I^-, CO_3^{2-}, SeO_4^{2-}$

